
Depth Panorama Generation on an iOS application for Fall Prevention
Katelyn Elisa Chen, Ken Wang, and Monroe Kennedy III

Department of Mechanical Engineering, Stanford University

Introduction to the SmartBelt for
Trajectory Prediction

Falls caused by external perturbation have the possibility of being prevented
through the prediction of a person’s path using information on past trajectory,
torso motion, and surrounding scene (Fig. 1).

Figure 1: A person’s predicted path and movement can be determined using information on
path, motion, and environment

• The Sway Covariance Ellipse is a new proposed metric that quantifies the
frequency of pose adjustment while walking. Frequent adjustments correspond
to higher fall risk [1].

• The surrounding scene is represented by a depth panorama that stores
information about the environment as point clouds.

• Using visual data from the panorama, the prediction model generates the
predicted trajectory that a person will take (Fig. 2).

Figure 2: The prediction model uses a variational autoencoder to encode past trajectories and a
long short-term memory network to predict future paths

Optimizing the Data Collection Setup

Figure 3: Original setup
with two Realsense cameras
(green) and four IMUs (red)

The original physical setup for the real-world walking
data collection study consisted of two Intel Realsense
cameras, four Inertial Measurement Units (IMUs), a step
counter, and a laptop (Fig. 3).
The unwieldy setup was counterproductive to fall preven-
tion, so the use of a phone was proposed. A single iPhone
is capable of collecting all the necessary data given the
following prerequisites:
• LiDAR capabilities to accurately detect depth data
• Compatibility with Apple’s ARKit

Transforming Depth Data to 3D Space
Scene depth information from the LiDAR sensor is stored as a CVPixelBuffer by
ARKit. To match the depth values, Z, to their corresponding positions in 3D
space, the following transformations are applied:
• Pixel coordinates to positions in the camera frame using the inverse of the

LiDAR intrinsic parameters, which is scaled from the camera intrinsic
parameters using the resolution ratio kx,y:XC

YC

Z

 = λK−1
lidar

u
v
1

, where Klidar =

fx/kx 0 σx/kx

0 fy/ky σy/ky

0 0 1

 and λ = Z

• Positions in the camera frame to the world frame:
XW

YW

Z
1

 = W
C T


XC

YC

Z
1


The positions in the world frame are used for visualization in ARKit. For use in
the depth panorama, further transformations are needed.

Visualizing the Point Cloud with ARKit
The unprojected depth data correspond to real positions in 3D space. Using
SceneKit, a rendering framework integrated with Swift APIs and ARKit, the points
are displayed as a "particle system" and overlaid on the camera view (Fig. 4). The
point cloud session updates at 60 FPS and can be toggled to display depth-based
color (Fig. 5).

Figure 4: Points are placed in 3D space using depth data (left:
point cloud view, right: camera view)

Figure 5: Point cloud
colored based on depth

Adapting Python Code to Swift and ARKit
The original panorama generation code was written with a coordinate frame (Fig. 6)
different from Swift’s (Fig. 7) so an additional rotation is required.

+Y

+X

+Z

Figure 6: Python coordinate frame

+Y

+X

+Z

Figure 7: Swift coordinate frame (landscape
right in ARKit)

Generating the Panorama
The previously gathered 3D position values are used to generate the depth image,
as shown in Fig. 8.
• The points are transformed back to world frame using the camera pose of the

current panorama frame (point gathering and panorama generation run on
different threads).

• A surround image of shape 180x360x1 is built from the panorama projection
algorithm.

• The last channel represents RGBA values such that points fade to white as
depth increases.

Figure 8: Video frame (left) and the corresponding depth image (right)

PyTorch iOS Deployment and Next Steps
Using PyTorch Mobile, the trajectory prediction
model will be deployed to the iPhone and run in real
time using the new panorama as the visual input.
• The states to be monitored include time, position,

sway covariance, step count, camera pose, and
velocity.

• Data logging methods must be explored to
determine which states and training data to store.

• Predictions from the phone deployment will be
compared to the original model to confirm result
correspondence.

• The chest harness for the phone will be updated for
increased comfort, stability, and usability.

Scan for video
documentation:

Acknowledgements
This work is made possible by the ARMLab and ME SURI program. Thank you
to Ken Wang and Monroe Kennedy III for their guidance and mentorship, Shivani
Guptasarma and Rafael Sonderegger for their crash courses on robotics, Ahmed
Muhammad for his assistance and support, and all ARMLab members for the
welcoming community.

References
[1] Weizhuo Wang, Michael Raitor, Steve Collins, C. Karen Liu, and Monroe Kennedy III au2. Trajectory and sway

prediction towards fall prevention, 2023.


	References

